Filtering with observation in a manifold: Theory and solution methods

Salem Said

Control and signal processing
University of Melbourne

Control and signal processing 2013
Outline

Introduction

The classical problem
 Problem statement
 Mathematical formulation
 Solution methods

Diffusions on manifolds
 Brownian Motion
 general case
 Manifolds in s.p.

Observation in a manifold
 Problem statement
 KS and Zakai
 Particle filter

Bibliography
Goals of Presentation

- Classical stochastic filtering: (a.g.w.n.)
 - Theory and solution methods
 - Analogy with other fields
- Diffusions on manifolds (Why?)
 - How to simulate them?
 - S.P. applications
- Observation in a manifold
 - Generalised filtering equation
 - Extension of the particle method

Said & Manton.
Filtering with observation in a manifold: Reduction to a Classical filtering problem.
SIAM Control and Optimisation, 51, 767, 2013.
Goals of Presentation

- Classical stochastic filtering: *(a.g.w.n.)*
 - Theory and solution methods
 - Analogy with other fields

- Diffusions on manifolds *(Why?)*
 - How to simulate them?
 - S.P. applications

- Observation in a manifold
 - Generalised filtering equation
 - Extension of the particle method

Said & Manton.
Filtering with observation in a manifold: Reduction to a Classical filtering problem.
SIAM Control and Optimisation, 51, 767, 2013.
Goals of Presentation

- Classical stochastic filtering: \textit{(a.g.w.n.)}
 - Theory and solution methods
 - Analogy with other fields

- Diffusions on manifolds \textit{(Why?)}
 - How to simulate them?
 - S.P. applications

- Observation in a manifold
 - Generalised filtering equation
 - Extension of the particle method

Said & Manton.
Filtering with observation in a manifold: Reduction to a Classical filtering problem.
Introduction

Goals of Presentation

- Classical stochastic filtering: (a.g.w.n.)
 - Theory and solution methods
 - Analogy with other fields

- Diffusions on manifolds (Why?)
 - How to simulate them?
 - S.P. applications

- Observation in a manifold
 - Generalised filtering equation
 - Extension of the particle method

Said & Manton.
Filtering with observation in a manifold: Reduction to a Classical filtering problem.
SIAM Control and Optimisation, 51, 767, 2013.
Goals of Presentation

▶ Classical stochastic filtering: (a.g.w.n.)
 – Theory and solution methods
 – Analogy with other fields
▶ Diffusions on manifolds (Why?)
 – How to simulate them?
 – S.P. applications
▶ Observation in a manifold
 – Generalised filtering equation
 – Extension of the particle method

Said & Manton.
Filtering with observation in a manifold: Reduction to a Classical filtering problem.
SIAM Control and Optimisation, 51, 767, 2013.
Outline

Introduction

The classical problem
 Problem statement
 Mathematical formulation
 Solution methods

Diffusions on manifolds
 Brownian Motion
 general case
 Manifolds in s.p.

Observation in a manifold
 Problem statement
 KS and Zakai
 Particle filter

Bibliography
Problem statement

estimate the state of a system from noisy observation

- System x a Markov process (finite state, diffusion, etc)
- Observation y (real valued)

$$y_t = \int_0^t h(x_s)ds + w_t$$

h sensor function, w Brownian motion independent from x

additive Gaussian white noise observation model

Problem: find the conditional distribution π_t of x_t given \mathcal{Y}_t

$$\int_x \varphi(x)\pi_t(x) = \mathbb{E} [\varphi(x_t)|\mathcal{Y}_t]$$
Problems statement

estimate the state of a system from noisy observation

- System x a Markov process (finite state, diffusion, etc)
- Observation y (real valued)

$$y_t = \int_0^t h(x_s) \, ds + w_t$$

h sensor function, w Brownian motion independent from x

additive Gaussian white noise observation model

Problem: find the conditional distribution π_t of x_t given \mathcal{Y}_t

$$\int_x \varphi(x) \pi_t(x) = \mathbb{E} [\varphi(x_t)|\mathcal{Y}_t]$$
Problem statement

estimate the state of a system from noisy observation

- System x a Markov process (finite state, diffusion, etc)
- Observation y (real valued)

$$y_t = \int_0^t h(x_s)ds + w_t$$

h sensor function, w Brownian motion independent from x

additive Gaussian white noise observation model

Problem: find the conditional distribution π_t of x_t given \mathcal{Y}_t

$$\int_x \varphi(x)\pi_t(x) = \mathbb{E} [\varphi(x_t) | \mathcal{Y}_t]$$
Problem statement

estimate the state of a system from noisy observation

▶ System x a Markov process (finite state, diffusion, etc)
▶ Observation y (real valued)

$$y_t = \int_0^t h(x_s)ds + w_t$$

h sensor function, w Brownian motion independent from x

additive Gaussian white noise observation model

Problem: find the conditional distribution π_t of x_t given \mathcal{Y}_t

$$\int_x \varphi(x)\pi_t(x) = \mathbb{E} [\varphi(x_t)|\mathcal{Y}_t]$$
Problem statement

x is a (hidden) time homogeneous Markov process

Kolmogorov forward equation p_t "density" of x_t

$$p_{t+\delta}(x) = \int_{x'} p_t(x') q_\delta(x', x)$$

$$\partial_t p_t(x) = A^* p_t(x)$$

diffusion approximately,

$$q_\delta(x', x) = \mathcal{N}(x' + \mu(x')\delta, \sigma^2(x')\delta)$$

$$A^* = -\frac{d}{dx} \mu(x) + \frac{1}{2} \frac{d^2}{dx^2} \sigma^2(x)$$
Problem statement

x is a (hidden) time homogeneous Markov process

Kolmogorov forward equation p_t "density" of x_t

$$
p_{t+\delta}(x) = \int_{x'} p_t(x') q_\delta(x', x)
$$

$$
\partial_t p_t(x) = A^* p_t(x)
$$

diffusion approximately,

$$
q_\delta(x', x) = \mathcal{N}(x' + \mu(x')\delta, \sigma^2(x')\delta)
$$

$$
A^* = -\frac{d}{dx} \mu(x) + \frac{1}{2} \frac{d^2}{dx^2} \sigma^2(x)
$$
Problem statement

x is a (hidden) time homogeneous Markov process

Kolmogorov forward equation p_t “density" of x_t

$$p_{t+\delta}(x) = \int_{x'} p_t(x') q_\delta(x', x)$$

$$\partial_t p_t(x) = A^* p_t(x)$$

diffusion approximately,

$$q_\delta(x', x) = \mathcal{N}(x' + \mu(x')\delta, \sigma^2(x')\delta)$$

$$A^* = -\frac{d}{dx} \mu(x) + \frac{1}{2} \frac{d^2}{dx^2} \sigma^2(x)$$
Problem statement

\(x \) is a (hidden) time homogeneous Markov process

Kolmogorov forward equation \(p_t \) "density" of \(x_t \)

\[
p_{t+\delta}(x) = \int_{x'} p_t(x') q_\delta(x', x)
\]

\[
\partial_t p_t(x) = A^* p_t(x)
\]

diffusion approximately,

\[
q_\delta(x', x) = \mathcal{N}(x' + \mu(x')\delta, \sigma^2(x')\delta)
\]

\[
A^* = -\frac{d}{dx} \mu(x) + \frac{1}{2} \frac{d^2}{dx^2} \sigma^2(x)
\]
Abstract Bayes formula

discretise observation

\[\delta y_t = h(x_t)\delta + \delta w_t \quad \ell(x_t; \delta y_t) = \exp[h(x_t)\delta y_t - (1/2)h^2(x_t)\delta] \]

approximate denormalised conditional density

\[\rho_t(x) = \int_{x_{n-1}} \ell(x_{n-1})q_\delta(x, x_{n-1}) \cdots \int_{x_0} \ell(x_0)p_0(x_0)q_\delta(x_0, x_1) \]

\[y \text{ is considered fixed! (}\tilde{x} \text{ independent copy)} \]

\[\int_x \varphi(x)\rho_t(x) = \mathbb{E}\left[\varphi(\tilde{x}_t)\prod_{i=0}^{n-1} \ell(\tilde{x}_i; \delta y_i) \right] \]

let \(\delta \downarrow 0 \Rightarrow \) KS formula

\[\int_x \varphi(x)\rho_t(x) = \mathbb{E}\left[\varphi(\tilde{x}_t)\exp\left(\int_0^t h(\tilde{x}_s)dy_s - (1/2) \int_0^t h^2(\tilde{x}_s)ds \right) \right] \]
Abstract Bayes formula

discretise observation

\[
\delta y_t = h(x_t)\delta + \delta w_t \quad \ell(x_t; \delta y_t) = \exp[h(x_t)\delta y_t - (1/2)h^2(x_t)\delta]
\]

approximate denormalised conditional density

\[
\rho_t^\delta(x) = \int_{x_{n-1}}^x \ell(x_{n-1})q_\delta(x, x_{n-1}) \ldots \int_{x_0}^x \ell(x_0)p_0(x_0)q_\delta(x_0, x_1)
\]

\(y\) is considered fixed! (\(\tilde{x}\) independent copy)

\[
\int_x \varphi(x)\rho_t^\delta(x) = \mathbb{E} \left[\varphi(\tilde{x}_t) \prod_{i=0}^{n-1} \ell(\tilde{x}_i; \delta y_i) \right]
\]

let \(\delta \downarrow 0\) ⇒ KS formula

\[
\int_x \varphi(x)\rho_t(x) = \mathbb{E} \left[\varphi(\tilde{x}_t) \exp \left(\int_0^t h(\tilde{x}_s)dy_s - (1/2) \int_0^t h^2(\tilde{x}_s)ds \right) \right]
\]
Abstract Bayes formula

discretise observation

\[\delta y_t = h(x_t)\delta + \delta w_t \]
\[\ell(x_t; \delta y_t) = \exp[h(x_t)\delta y_t - (1/2)h^2(x_t)\delta] \]

approximate denormalised conditional density

\[\rho_t^\delta(x) = \int_{x_{n-1}} \ell(x_{n-1})q_\delta(x, x_{n-1}) \cdots \int_{x_{0}} \ell(x_0)p_0(x_0)q_\delta(x_0, x_1) \]

\(y \) is considered fixed! (\(\tilde{x} \) independent copy)

\[\int_x \varphi(x)\rho_t^\delta(x) = \mathbb{E} \left[\varphi(\tilde{x}_t) \prod_{i=0}^{n-1} \ell(\tilde{x}_i; \delta y_i) \right] \]

let \(\delta \downarrow 0 \Rightarrow \) KS formula

\[\int_x \varphi(x)\rho_t(x) = \mathbb{E} \left[\varphi(\tilde{x}_t) \exp \left(\int_0^t h(\tilde{x}_s)dy_s - (1/2) \int_0^t h^2(\tilde{x}_s)ds \right) \right] \]
Abstract Bayes formula

discretise observation

\[\delta y_t = h(x_t)\delta + \delta w_t \quad \ell(x_t; \delta y_t) = \exp[h(x_t)\delta y_t - (1/2)h^2(x_t)\delta] \]

approximate denormalised conditional density

\[\rho_t^\delta(x) = \int_{x_{n-1}} \ell(x_{n-1})q_\delta(x, x_{n-1}) \ldots \int_{x_0} \ell(x_0)p_0(x_0)q_\delta(x_0, x_1) \]

\(y \) is considered fixed! (\(\tilde{x} \) independent copy)

\[\int_x \varphi(x)\rho_t^\delta(x) = \mathbb{E} \left[\varphi(\tilde{x}_t) \prod_{i=0}^{n-1} \ell(\tilde{x}_i; \delta y_i) \right] \]

let \(\delta \downarrow 0 \Rightarrow \) KS formula

\[\int_x \varphi(x)\rho_t(x) = \mathbb{E} \left[\varphi(\tilde{x}_t) \exp \left(\int_0^t h(\tilde{x}_s)dy_s - (1/2) \int_0^t h^2(\tilde{x}_s)ds \right) \right] \]
Abstract Bayes formula

discretise observation

\[\delta y_t = h(x_t)\delta + \delta w_t \]
\[\ell(x_t; \delta y_t) = \exp[h(x_t)\delta y_t - (1/2)h^2(x_t)\delta] \]

approximate denormalised conditional density

\[\rho^\delta_t(x) = \int_{x_{n-1}} \ell(x_{n-1})q_{\delta}(x, x_{n-1}) \cdots \int_{x_0} \ell(x_0)p_0(x_0)q_{\delta}(x_0, x_1) \]

\(y \) is considered fixed! (\(\tilde{x} \) independent copy)

\[\int_x \varphi(x)\rho^\delta_t(x) = \mathbb{E} \left[\varphi(\tilde{x}_t) \prod_{i=0}^{n-1} \ell(\tilde{x}_i; \delta y_i) \right] \]

let \(\delta \downarrow 0 \implies \text{KS formula} \)

\[\int_x \varphi(x)\rho_t(x) = \mathbb{E} \left[\varphi(\tilde{x}_t) \exp \left(\int_0^t h(\tilde{x}_s)dy_s - (1/2)\int_0^t h^2(\tilde{x}_s)ds \right) \right] \]
Zakai equation

stochastic pde for denormalised density

first order approximation

\[\rho_{t+\delta}(x) \approx \int_{x'} \ell(x', \delta y_t) \rho_t(x') q_\delta(x', x) \]

\[\rho_{t+\delta}(x) \approx \int_{x'} \rho_t(x') q_\delta(x', x) + \left(\int_{x'} h(x') \rho_t(x') q_{\delta=0}(x', x) \right) \delta y_t \]

first order expansion

\[\rho_{t+\delta}(x) - \rho_t(x) \approx A^* \rho_t(x) \delta + \rho_t(x) h(x) \delta y_t \]

Zakai equation (\(\dot{y}_t \) white noise)

\[\partial_t \rho_t(x) = A^* \rho_t(x) + \rho_t(x) h(x) \dot{y}_t \]
Zakai equation

stochastic pde for denormalised density

first order approximation

\[\rho_{t+\delta}(x) \approx \int_{x'} \ell(x', \delta y_t) \rho_t(x') q_\delta(x', x) \]

\[\rho_{t+\delta}(x) \approx \int_{x'} \rho_t(x') q_\delta(x', x) + \left(\int_{x'} h(x') \rho_t(x') q_{\delta=0}(x', x) \right) \delta y_t \]

first order expansion

\[\rho_{t+\delta}(x) - \rho_t(x) \approx A^* \rho_t(x) \delta + \rho_t(x) h(x) \delta y_t \]

Zakai equation \((\dot{y}_t \text{ white noise}) \)

\[\partial_t \rho_t(x) = A^* \rho_t(x) + \rho_t(x) h(x) \dot{y}_t \]
Zakai equation

stochastic pde for denormalised density

first order approximation

\[\rho_{t+\delta}(x) \approx \int_{x'} \ell(x', \delta y_t) \rho_t(x') q_\delta(x', x) \]

\[\rho_{t+\delta}(x) \approx \int_{x'} \rho_t(x') q_\delta(x', x) + \left(\int_{x'} h(x') \rho_t(x') q_\delta=0(x', x) \right) \delta y_t \]

first order expansion

\[\rho_{t+\delta}(x) - \rho_t(x) \approx A^* \rho_t(x) \delta + \rho_t(x) h(x) \delta y_t \]

Zakai equation (\(\dot{y}_t \) white noise)

\[\partial_t \rho_t(x) = A^* \rho_t(x) + \rho_t(x) h(x) \dot{y}_t \]
Zakai equation

stochastic pde for denormalised density

first order approximation

\[\rho_{t+\delta}(x) \approx \int_{x'} \ell(x', \delta y_t) \rho_t(x') q_\delta(x', x) \]

\[\rho_{t+\delta}(x) \approx \int_{x'} \rho_t(x') q_\delta(x', x) + \left(\int_{x'} h(x') \rho_t(x') q_{\delta=0}(x', x) \right) \delta y_t \]

first order expansion

\[\rho_{t+\delta}(x) - \rho_t(x) \approx A^* \rho_t(x) \delta + \rho_t(x) h(x) \delta y_t \]

Zakai equation (\(\dot{y}_t\) white noise)

\[\partial_t \rho_t(x) = A^* \rho_t(x) + \rho_t(x) h(x) \dot{y}_t \]
Filtering with observation in a manifold

The classical problem

Mathematical formulation

Zakai equation

stochastic pde for denormalised density

first order approximation

\[\rho_{t+\delta}(x) \approx \int_{x'} \ell(x', \delta y_t) \rho_t(x') q_\delta(x', x) \]

\[\rho_{t+\delta}(x) \approx \int_{x'} \rho_t(x') q_\delta(x', x) + \left(\int_{x'} h(x') \rho_t(x') q_{\delta=0}(x', x) \right) \delta y_t \]

first order expansion

\[\rho_{t+\delta}(x) - \rho_t(x) \approx A^* \rho_t(x) \delta + \rho_t(x) h(x) \delta y_t \]

Zakai equation \((\dot{y}_t \text{ white noise})\)

\[\partial_t \rho_t(x) = A^* \rho_t(x) + \rho_t(x) h(x) \dot{y}_t \]
Particle system

Monte Carlo implementation of KS formula

$$\int_x \varphi(x) \rho_t(x) = \mathbb{E}[\varphi(\tilde{x}_t) L_t]$$

Particies: N independent copies of \tilde{x}

$$\int_x \varphi(x) \hat{\rho}_t(x) = \frac{1}{N} \sum_{n=1}^{N} \varphi(\tilde{x}^n_t) L(\tilde{x}^n; t)$$

- **Resampling**: reduce variance of particle weights

Del Moral.
Particle system

Monte Carlo implementation of KS formula

\[\int \varphi(x) \rho_t(x) = \mathbb{E}[\varphi(\tilde{x}_t)L_t] \]

Particles N independent copies of \tilde{x}

\[\int \varphi(x) \hat{\rho}_t(x) = \frac{1}{N} \sum_{n=1}^{N} \varphi(\tilde{x}^n_t)L(\tilde{x}^n; t) \]

- **Resampling**: reduce variance of particle weights

Del Moral.

Particle system

Monte Carlo implementation of KS formula

\[
\int_x \phi(x) \rho_t(x) = \mathbb{E}[\phi(\tilde{x}_t)L_t]
\]

Particles \(N\) independent copies of \(\tilde{x}\)

\[
\int_x \phi(x) \hat{\rho}_t(x) = \frac{1}{N} \sum_{n=1}^{N} \phi(\tilde{x}_t^n)L(\tilde{x}_t^n; t)
\]

▶ Resampling: reduce variance of particle weights

Del Moral.
Particle system

Monte Carlo implementation of KS formula

\[\int_x \varphi(x) \rho_t(x) = \mathbb{E}[\varphi(\tilde{x}_t)L_t] \]

Particles \(N \) independent copies of \(\tilde{x} \)

\[\int_x \varphi(x) \hat{\rho}_t(x) = \frac{1}{N} \sum_{n=1}^{N} \varphi(\tilde{x}_t^n)L(\tilde{x}^n; t) \]

- **Resampling**: reduce variance of particle weights

Particle system

Monte Carlo implementation of KS formula

\[\int_x \varphi(x) \rho_t(x) = \mathbb{E}[\varphi(\tilde{x}_t)L_t] \]

Particles \(N \) independent copies of \(\tilde{x} \)

\[\int_x \varphi(x) \hat{\rho}_t(x) = \frac{1}{N} \sum_{n=1}^{N} \varphi(\tilde{x}_t^n)L(\tilde{x}_t^n; t) \]

- **Resampling**: reduce variance of particle weights

Del Moral.
Chaos expansion

projection of Zakai equation on an orthonormal basis

random distribution \((w_j \text{ i.i.d. standard normal})\)

\[w_t = \sum_{j \geq 0} w_j \psi_j(t) \quad \{\psi_j\} \text{ o.n.b. in } L^2(0, T) \]

Chaos space \(H_n\) span of \((h_\alpha \text{ Hermite polynomial})\)

\[h_{\alpha_1}(w_{j_1}) \cdots h_{\alpha_m}(w_{j_m}) \quad \alpha_1 + \ldots + \alpha_m = n \]

Wiener expansion \(L^2(w) = \bigoplus_n H_n\)

Holden et al.
Chaos expansion

projection of Zakai equation on an orthonormal basis

random distribution (w_j i.i.d. standard normal)

$$w_t = \sum_{j \geq 0} w_j \psi_j(t) \quad \{\psi_j\} \text{ o.n.b. in } L^2(0, T)$$

Chaos space H_n span of (h_α Hermite polynomial)

$$h_{\alpha_1} (w_{j_1}) \ldots h_{\alpha_m} (w_{j_m}) \quad \alpha_1 + \ldots + \alpha_m = n$$

Wiener expansion $L^2(w) = \oplus_n H_n$

Holden et al.
Chaos expansion

projection of Zakai equation on an orthonormal basis

random distribution (w_j i.i.d. standard normal)

$$w_t = \sum_{j \geq 0} w_j \psi_j(t) \quad \{\psi_j\} \text{ o.n.b. in } L^2(0, T)$$

Chaos space H_n span of (h_α Hermite polynomial)

$$h_{\alpha_1}(w_{j_1}) \cdots h_{\alpha_m}(w_{j_m}) \quad \alpha_1 + \ldots + \alpha_m = n$$

Wiener expansion $L^2(w) = \bigoplus_n H_n$

Holden et al.
Chaos expansion

projection of Zakai equation on an orthonormal basis

random distribution \((w_j \text{ i.i.d. standard normal}) \)

\[
w_t = \sum_{j \geq 0} w_j \psi_j(t) \quad \{\psi_j\} \text{ o.n.b. in } L^2(0, T)
\]

Chaos space \(H_n \) span of \((h_\alpha \text{ Hermite polynomial}) \)

\[
h_{\alpha_1}(w_{j_1}) \ldots h_{\alpha_m}(w_{j_m}) \quad \alpha_1 + \ldots + \alpha_m = n
\]

Wiener expansion \(L^2(w) = \bigoplus_n H_n \)

Chaos expansion

projection of Zakai equation on an orthonormal basis

random distribution \((w_j \text{ i.i.d. standard normal})\)

\[
w_t = \sum_{j \geq 0} w_j \psi_j(t) \quad \{\psi_j\} \text{ o.n.b. in } L^2(0, T)
\]

Chaos space \(H_n\) span of \((h_\alpha \text{ Hermite polynomial})\)

\[h_{\alpha_1}(w_{j_1}) \ldots h_{\alpha_m}(w_{j_m}) \quad \alpha_1 + \ldots + \alpha_m = n\]

Wiener expansion \(L^2(w) = \bigoplus_n H_n\)

Holden et al.
Outline

Introduction

The classical problem
 Problem statement
 Mathematical formulation
 Solution methods

Diffusions on manifolds
 Brownian Motion
 general case
 Manifolds in s.p.

Observation in a manifold
 Problem statement
 KS and Zakai
 Particle filter

Bibliography
A kind of CLT-I

Riemannian manifold M with metric $\langle \cdot, \cdot \rangle$

Geodesic "zero acceleration" curve

$$\gamma(t) \quad \gamma(0) = p \quad \dot{\gamma}(0) = v$$

Hessian tensor $f \in C^2(M)$

$$(f \circ \gamma)(t) = (f \circ \gamma)(0) + \langle \nabla f, v \rangle t + (1/2) \nabla^2 f(v, v) t^2 + o(t^2)$$

Laplacian trace of Hessian

$$\Delta f(p) = \sum_i \nabla^2 f(e_i, e_i) \quad \{e_i\} \text{ tangent o.n.b. at } p$$
A kind of CLT-I

Riemannian manifold M with metric $\langle \cdot, \cdot \rangle$

Geodesic "zero acceleration" curve

$$\gamma(t) \quad \gamma(0) = p \quad \dot{\gamma}(0) = v$$

Hessian tensor $f \in C^2(M)$

$$(f \circ \gamma)(t) = (f \circ \gamma)(0) + \langle \nabla f, v \rangle t + \frac{1}{2} \nabla^2 f(v, v) t^2 + o(t^2)$$

Laplacian trace of Hessian

$$\Delta f(p) = \sum_i \nabla^2 f(e_i, e_i) \quad \{e_i\} \text{ tangent o.n.b. at } p$$
A kind of CLT-I

Riemannian manifold M with metric $\langle \cdot, \cdot \rangle$

Geodesic "zero acceleration" curve

$$\gamma(t), \quad \gamma(0) = p, \quad \dot{\gamma}(0) = v$$

Hessian tensor $f \in C^2(M)$

$$(f \circ \gamma)(t) = (f \circ \gamma)(0) + \langle \nabla f, v \rangle t + (1/2) \nabla^2 f(v, v) t^2 + o(t^2)$$

Laplacian trace of Hessian

$$\Delta f(p) = \sum_i \nabla^2 f(e_i, e_i) \quad \{e_i\} \text{ tangent o.n.b. at } p$$
A kind of CLT-I

Riemannian manifold M with metric $\langle \cdot, \cdot \rangle$

Geodesic “zero acceleration” curve

$$\gamma(t) \quad \gamma(0) = p \quad \dot{\gamma}(0) = v$$

Hessian tensor $f \in C^2(M)$

$$(f \circ \gamma)(t) = (f \circ \gamma)(0) + \langle \nabla f, v \rangle t + (1/2) \nabla^2 f(v, v) t^2 + o(t^2)$$

Laplacian trace of Hessian

$$\Delta f(p) = \sum_i \nabla^2 f(e_i, e_i) \quad \{e_i\} \text{ tangent o.n.b. at } p$$
A kind of CLT-II

successive random geodesics due to “impulse"

Random geodesic

\[\nu = \sum w^i e_i \text{ and } w^i \text{ white, unit variance} \]

Effect on \(f \)

\[\mathbb{E}(f \circ \gamma)(\delta) = \mathbb{E}(f \circ \gamma)(0) + (\delta/2)\Delta f(p) + o(\delta^2) \]

Scaling independent steps \(\Rightarrow \) process \(y \)

\[\mathbb{E}f(y_t) = \mathbb{E}f(y_0) + (1/2) \int_0^t \mathbb{E}\Delta f(y_s) ds \]
A kind of CLT-II

successive random geodesics due to “impulse"

Random geodesic

\[\nu = \sum w^i e_i \] and \(w^i \) white, unit variance

Effect on \(f \)

\[\mathbb{E}(f \circ \gamma)(\delta) = \mathbb{E}(f \circ \gamma)(0) + (\delta/2)\Delta f(p) + o(\delta^2) \]

Scaling independent steps \(\Rightarrow \) process \(y \)

\[\mathbb{E}f(y_t) = \mathbb{E}f(y_0) + (1/2) \int_0^t \mathbb{E}\Delta f(y_s) ds \]
A kind of CLT-II

successive random geodesics due to “impulse"

Random geodesic

\[\nu = \sum w^i e_i \text{ and } w^i \text{ white, unit variance} \]

Effect on \(f \)

\[\mathbb{E}(f \circ \gamma)(\delta) = \mathbb{E}(f \circ \gamma)(0) + (\delta/2)\Delta f(p) + o(\delta^2) \]

Scaling independent steps \(\Rightarrow \) process \(y \)

\[\mathbb{E}f(y_t) = \mathbb{E}f(y_0) + (1/2) \int_0^t \mathbb{E}\Delta f(y_s)ds \]
A kind of CLT-II

successive random geodesics due to “impulse"

Random geodesic

\[\nu = \sum w^i e_i \text{ and } w^i \text{ white, unit variance} \]

Effect on \(f \)

\[\mathbb{E}(f \circ \gamma)(\delta) = \mathbb{E}(f \circ \gamma)(0) + (\delta/2) \Delta f(p) + o(\delta^2) \]

Scaling independent steps ⇒ process \(y \)

\[\mathbb{E}f(y_t) = \mathbb{E}f(y_0) + (1/2) \int_0^t \mathbb{E}\Delta f(y_s) ds \]
Filtering with observation in a manifold
Diffusions on manifolds
Brownian Motion

Itô line integral

integral using geodesic increments

Tentative form of integral

$$\int_0^t \langle E, dy_s \rangle = \lim_{\delta \downarrow 0} \sum_{k\delta < t} \langle E_{k\delta}, I(y_{k\delta}, y_{(k+1)\delta}) \rangle$$

In order to have good properties (independence of increments)

$I : M \times M \rightarrow TM$ geodesic interpolation rule

Generalised Itô formula

$$df(y_t) = \langle \nabla f, dy_t \rangle + \frac{1}{2} \Delta f(y_t) dt$$
filtering with observation in a manifold

- Diffusions on manifolds
- Brownian Motion

Itô line integral

Integral using geodesic increments

Tentative form of integral

\[
\int_0^t \langle E, dy_s \rangle = \lim_{\delta \downarrow 0} \sum_{k\delta < t} \langle E_{k\delta}, I(y_{k\delta}, y_{(k+1)\delta}) \rangle
\]

In order to have good properties (independence of increments)

\(I : M \times M \rightarrow TM \) geodesic interpolation rule

Generalised Itô formula

\[
df(y_t) = \langle \nabla f, dy_t \rangle + \frac{1}{2} \Delta f(y_t) dt
\]
Itô line integral

integral using geodesic increments

Tentative form of integral

\[
\int_0^t \langle E, dy_s \rangle = \lim_{\delta \downarrow 0} \sum_{k\delta < t} \langle E_{k\delta}, I(y_{k\delta}, y_{(k+1)\delta}) \rangle
\]

In order to have good properties (independence of increments)

\[I : M \times M \rightarrow TM \text{ geodesic interpolation rule} \]

Generalised Itô formula

\[df(y_t) = \langle \nabla f, dy_t \rangle + \frac{1}{2} \Delta f(y_t) dt \]
Itô line integral

integral using geodesic increments

Tentative form of integral

\[
\int_0^t \langle E, dy_s \rangle = \lim_{\delta \downarrow 0} \sum_{k\delta < t} \langle E_k\delta, I(y_k\delta, y_{(k+1)\delta}) \rangle
\]

In order to have good properties (independence of increments)

\[I: M \times M \to TM \] geodesic interpolation rule

Generalised Itô formula

\[
df(y_t) = \langle \nabla f, dy_t \rangle + \frac{1}{2} \Delta f(y_t) dt
\]
elliptic diffusion

elliptic diffusion: can be written as b.m. with drift

Generator

\[A = H + \frac{1}{2} \Delta \]

\(H \) vector field

Simulation

can also be carried out using geodesics

Application stochastic gradient

\[A = -\nabla F + \frac{\sigma^2}{2} \Delta \implies \text{stationary density } \propto e^{-2F/\sigma^2} \]
elliptic diffusion

elliptic diffusion: can be written as b.m. with drift

Generator

\[A = H + \frac{1}{2} \Delta \]

\(H \) vector field

Simulation

can also be carried out using geodesics

Application stochastic gradient

\[A = -\nabla F + \frac{\sigma^2}{2} \Delta \implies \text{stationary density} \propto e^{-2F/\sigma^2} \]
elliptic diffusion

elliptic diffusion: can be written as b.m. with drift

Generator

\[A = H + \frac{1}{2} \Delta \quad H \text{ vector field} \]

Simulation

can also be carried out using geodesics

Application stochastic gradient

\[A = -\nabla F + \frac{\sigma^2}{2} \Delta \implies \text{stationary density} \propto e^{-2F/\sigma^2} \]
elliptic diffusion

elliptic diffusion: can be written as b.m. with drift

Generator

\[A = H + \frac{1}{2} \Delta \]

\(H \) vector field

Simulation

can also be carried out using geodesics

Application stochastic gradient

\[A = -\nabla F + \frac{\sigma^2}{2} \Delta \implies \text{stationary density } \propto e^{-2F/\sigma^2} \]
S.P. Applications

A vision towards stochastic algorithms

classical matrix manifolds (symmetric spaces)
 - $P_+(n)$ p.d.s. matrix ⇒ covariance matrix
 - $V_{n,k}$ Stiefel manifold ⇒ sensor arrays
 - $G_{n,k}$ Grassmann manifold ⇒ subspace

Algorithms
 - Riemannian center of mass ⇒ model change detection
 - Stochastic gradient ⇒ subspace tracking

Question(s) of performance
S.P. Applications

A vision towards stochastic algorithms

classical matrix manifolds (symmetric spaces)
 ▶ $P_+(n)$ p.d.s. matrix \Rightarrow covariance matrix
 ▶ $V_{n,k}$ Stiefel manifold \Rightarrow sensor arrays
 ▶ $G_{n,k}$ Grassmann manifold \Rightarrow subspace

Algorithms
 ▶ Riemannian center of mass \Rightarrow model change detection
 ▶ Stochastic gradient \Rightarrow subspace tracking

Question(s) of performance
S.P. Applications

A vision towards stochastic algorithms

classical matrix manifolds (symmetric spaces)

- $P_+(n)$ p.d.s. matrix \Rightarrow covariance matrix
- $V_{n,k}$ Stiefel manifold \Rightarrow sensor arrays
- $G_{n,k}$ Grassmann manifold \Rightarrow subspace

Algorithms

- Riemannian center of mass \Rightarrow model change detection
- Stochastic gradient \Rightarrow subspace tracking

Question(s) of performance
S.P. Applications

A vision towards stochastic algorithms

classical matrix manifolds (symmetric spaces)
- $P_+(n)$ p.d.s. matrix \Rightarrow covariance matrix
- $V_{n,k}$ Stiefel manifold \Rightarrow sensor arrays
- $G_{n,k}$ Grassmann manifold \Rightarrow subspace

Algorithms
- Riemannian center of mass \Rightarrow model change detection
- Stochastic gradient \Rightarrow subspace tracking

Question(s) of performance
Outline

Introduction

The classical problem
 Problem statement
 Mathematical formulation
 Solution methods

Diffusions on manifolds
 Brownian Motion
 general case
 Manifolds in s.p.

Observation in a manifold
 Problem statement
 KS and Zakai
 Particle filter

Bibliography
A model problem

Estimate angular velocity ω from partial observation of pose y

State model $\omega \in \mathbb{R}^3$ unknown constant
Observation model y evolves on unit sphere

$$\dot{y}_t = -y_t \times \{\omega \, dt + w_t\} \quad \text{w_t vector white noise}$$

Comment on model Rigid body mechanics
Innovation structure what plays the role of δy_t

- Noiseless case
- Rolling without slipping
- Moving frame e_1, e_2
A model problem

Estimate angular velocity ω from partial observation of pose y

State model $\omega \in \mathbb{R}^3$ unknown constant

Observation model y evolves on unit sphere

$$\dot{y}_t = -y_t \times \{\omega dt + w_t\}$$

w_t vector white noise

Comment on model Rigid body mechanics

Innovation structure what plays the role of δy_t

- Noiseless case
- Rolling without slipping
- Moving frame e_1, e_2
A model problem

Estimate angular velocity ω from partial observation of pose y

State model $\omega \in \mathbb{R}^3$ unknown constant

Observation model y evolves on unit sphere

$$\dot{y}_t = -y_t \times \{\omega dt + w_t\} \quad w_t \text{ vector white noise}$$

Comment on model Rigid body mechanics

Innovation structure what plays the role of δy_t

- Noiseless case
- Rolling without slipping
- Moving frame e_1, e_2
A model problem

Estimate angular velocity ω from partial observation of pose y

State model $\omega \in \mathbb{R}^3$ unknown constant

Observation model y evolves on unit sphere

$$\dot{y}_t = -y_t \times \{\omega dt + w_t\} \quad w_t \text{ vector white noise}$$

Comment on model Rigid body mechanics

Innovation structure what plays the role of δy_t

- Noiseless case
- Rolling without slipping
- Moving frame e_1, e_2
A model problem

Estimate angular velocity ω from partial observation of pose y

State model $\omega \in \mathbb{R}^3$ unknown constant

Observation model y evolves on unit sphere

$$\dot{y}_t = -y_t \times \{\omega dt + w_t\} \quad w_t \text{ vector white noise}$$

Comment on model Rigid body mechanics

Innovation structure what plays the role of δy_t

- Noiseless case
- Rolling without slipping
- Moving frame e_1, e_2
Problem statement

Riemannian manifold M with metric $\langle \cdot, \cdot \rangle$

SDE common appearance

\[
\dot{y}_t = H(y_t, x_t) + \sum_r (Y_t) w_t^r
\]

Generator (conditionally on x)

\[
A = H_x + \frac{1}{2} \Delta
\]

Intuition

\[
\delta y_t \in T_{y_t}M \quad \delta y_t = H(x_t, y_t)\delta + \delta w_t^i e_i
\]
Problem statement

Riemannian manifold M with metric $\langle \cdot, \cdot \rangle$

SDE common appearance

$$\dot{y}_t = H(y_t, x_t) + \sum_r(Y_t)w_t^r$$

Generator (conditionally on x)

$$A = H_x + \frac{1}{2}\Delta$$

Intuition

$$\delta y_t \in T_{y_t}M \quad \delta y_t = H(x_t, y_t)\delta + \delta w_t^i e_i$$
Problem statement

Riemannian manifold M with metric $\langle \cdot, \cdot \rangle$

SDE common appearance

$$\dot{y}_t = H(y_t, x_t) + \sum_r(Y_t)w_t^r$$

Generator (conditionally on x)

$$A = H_x + \frac{1}{2}\Delta$$

Intuition

$$\delta y_t \in T_{y_t}M \quad \delta y_t = H(x_t, y_t)\delta + \delta w_t^i e_i$$
Problem statement

Riemannian manifold M with metric $\langle \cdot, \cdot \rangle$

SDE common appearance

$$\dot{y}_t = H(y_t, x_t) + \sum_r(Y_t)w_t^r$$

Generator (conditionally on x)

$$A = H_x + \frac{1}{2} \Delta$$

Intuition

$$\delta y_t \in T_{y_t}M \quad \delta y_t = H(x_t, y_t)\delta + \delta w_t^i e_i$$
Interpolation rules

Interpolation rule

$$\delta y_t = I(y_t, y_{t+\delta}) \quad I : M \times M \rightarrow TM$$

How to choose I?

$$\ell(x_t; \delta y_t) = \exp \left[\langle H_t, \delta y_t \rangle - \frac{1}{2} |H_t|^2 \delta \right]$$

A variety of choices

- Geodesic interpolation
- Second order equivalence

Stochastic integral

$$\int_0^t \langle E, dy_s \rangle = \lim_{\delta \downarrow 0} \sum_{k\delta < t} \langle E_{k\delta}, I(y_{k\delta}, y_{(k+1)\delta}) \rangle$$
Interpolation rules

Interpolation rule

\[\delta y_t = I(y_t, y_{t+\delta}) \quad I : M \times M \to TM \]

How to chose \(I \)?

\[\ell(x_t; \delta y_t) = \exp \left[\langle H_t, \delta y_t \rangle - (1/2) |H_t|^2 \delta \right] \]

A variety of choices

- Geodesic interpolation
- Second order equivalence

Stochastic integral

\[\int_0^t \langle E, dy_s \rangle = \lim_{\delta \downarrow 0} \sum_{k\delta < t} \langle E_{k\delta}, I(y_{k\delta}, y_{(k+1)\delta}) \rangle \]
Interpolation rules

Interpolation rule

$$\delta y_t = I(y_t, y_{t+\delta}) \quad I : M \times M \to TM$$

How to chose I?

$$\ell(x_t; \delta y_t) = \exp \left[\langle H_t, \delta y_t \rangle - \frac{1}{2} |H_t|^2 \delta \right]$$

A variety of choices

- Geodesic interpolation
- Second order equivalence

Stochastic integral

$$\int_0^t \langle E, dy_s \rangle = \lim_{\delta \downarrow 0} \sum_{k \delta < t} \langle E_{k\delta}, I(y_k \delta, y_{(k+1)\delta}) \rangle$$
Interpolation rules

Interpolation rule

\[\delta y_t = I(y_t, y_{t+\delta}) \quad I : M \times M \to TM \]

How to chose \(I \)?

\[\ell(x_t; \delta y_t) = \exp \left[\langle H_t, \delta y_t \rangle - \frac{1}{2} |H_t|^2 \delta \right] \]

A variety of choices

- Geodesic interpolation
- Second order equivalence

Stochastic integral

\[\int_0^t \langle E, dy_s \rangle = \lim_{\delta \downarrow 0} \sum_{k\delta < t} \langle E_{k\delta}, I(y_{k\delta}, y_{(k+1)\delta}) \rangle \]
KS and Zakai equation

Likelihood process

\[L_t = \exp \left(\int_0^t \langle H, dy_s \rangle - \frac{1}{2} \int_0^t |H_s|^2 \, ds \right) \]

KS formula

\[\int_x \varphi(x) \pi_t(x) = \frac{\int_x \varphi(x) \rho_t(x)}{\int_x \rho_t(x)} \quad \int_x \varphi(x) \rho_t(x) = \mathbb{E} [\varphi(\tilde{x}_t)L_t] \]

Zakai equation

\[\partial_t \rho_t(x) = A^* \rho_t(x) + \rho_t(x) \langle H, \dot{y}_t \rangle \]
Particle filter

Exactly the same approach as in the classical case

\[
\int_x \varphi(x) \hat{\rho}_t(x) = \frac{1}{N} \sum_{n=1}^{N} \varphi(\tilde{x}_t^n) L(\tilde{x}_t^n; t)
\]

Back to model problem
Outline

Introduction
The classical problem
 Problem statement
 Mathematical formulation
 Solution methods
Diffusions on manifolds
 Brownian Motion
 general case
 Manifolds in s.p.
Observation in a manifold
 Problem statement
 KS and Zakai
 Particle filter

Bibliography
Some basic references

Jazewinski.
Classical book on optimal filtering
Mostly Engineering point of view

Bain & Crisan.
Uses measure theory framework
Detailed study of solution methods

Hsu.
Stochastic analysis on manifolds. 2002.
Readable introduction to diffusions on manifolds